日韩经典一区,日韩a免费,国产欧美一区二区三区观看,日韩一区国产二区欧美三,精品日韩欧美一区二区三区在线播放,国产免费一级视频,日韩国产一区二区

數(shù)學(xué)二次函數(shù)知識點(diǎn)總結(jié)

時(shí)間:2025-02-13 17:29:40 思穎 總結(jié) 我要投稿
  • 相關(guān)推薦

數(shù)學(xué)二次函數(shù)知識點(diǎn)總結(jié)

  在我們平凡的學(xué)生生涯里,是不是聽到知識點(diǎn),就立刻清醒了?知識點(diǎn)就是學(xué)習(xí)的重點(diǎn)。那么,都有哪些知識點(diǎn)呢?下面是小編整理的數(shù)學(xué)二次函數(shù)知識點(diǎn)總結(jié),歡迎大家分享。

數(shù)學(xué)二次函數(shù)知識點(diǎn)總結(jié)

  數(shù)學(xué)二次函數(shù)知識點(diǎn)總結(jié) 1

  二次函數(shù)及其圖像

  二次函數(shù)(quadraticfunction)是指未知數(shù)的最高次數(shù)為二次的多項(xiàng)式函數(shù)。二次函數(shù)可以表示為f(x)=ax^2bxc(a不為0)。其圖像是一條主軸平行于y軸的拋物線。

  一般的,自變量x和因變量y之間存在如下關(guān)系:

  一般式

  y=ax∧2;bxc(a≠0,a、b、c為常數(shù)),頂點(diǎn)坐標(biāo)為(-b/2a,-(4ac-b∧2)/4a);

  頂點(diǎn)式

  y=a(xm)∧2k(a≠0,a、m、k為常數(shù))或y=a(x-h)∧2k(a≠0,a、h、k為常數(shù)),頂點(diǎn)坐標(biāo)為(-m,k)對稱軸為x=-m,頂點(diǎn)的位置特征和圖像的開口方向與函數(shù)y=ax∧2的圖像相同,有時(shí)題目會指出讓你用配方法把一般式化成頂點(diǎn)式;

  交點(diǎn)式

  y=a(x-x1)(x-x2)[僅限于與x軸有交點(diǎn)A(x1,0)和B(x2,0)的拋物線];

  重要概念:a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時(shí),開口方向向上,a<0時(shí),開口方向向下。a的絕對值還可以決定開口大小,a的絕對值越大開口就越小,a的絕對值越小開口就越大。

  牛頓插值公式(已知三點(diǎn)求函數(shù)解析式)

  y=(y3(x-x1)(x-x2))/((x3-x1)(x3-x2)(y2(x-x1)(x-x3))/((x2-x1)(x2-x3)(y1(x-x2)(x-x3))/((x1-x2)(x1-x3)。由此可引導(dǎo)出交點(diǎn)式的系數(shù)a=y1/(x1*x2)(y1為截距)

  求根公式

  二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。

  x是自變量,y是x的二次函數(shù)

  x1,x2=[-b±(√(b^2-4ac))]/2a

  (即一元二次方程求根公式)

  求根的方法還有因式分解法和配方法

  在平面直角坐標(biāo)系中作出二次函數(shù)y=2x的平方的圖像,可以看出,二次函數(shù)的圖像是一條永無止境的拋物線。不同的二次函數(shù)圖像

  如果所畫圖形準(zhǔn)確無誤,那么二次函數(shù)將是由一般式平移得到的。

  注意:草圖要有1本身圖像,旁邊注明函數(shù)。

  2畫出對稱軸,并注明X=什么

  3與X軸交點(diǎn)坐標(biāo),與Y軸交點(diǎn)坐標(biāo),頂點(diǎn)坐標(biāo)。拋物線的性質(zhì)

  軸對稱

  1.拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。

  對稱軸與拋物線唯一的交點(diǎn)為拋物線的頂點(diǎn)P。

  特別地,當(dāng)b=0時(shí),拋物線的對稱軸是y軸(即直線x=0)

  頂點(diǎn)

  2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為P(-b/2a,4ac-b^2;)/4a)

  當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ=b^2;-4ac=0時(shí),P在x軸上。

  開口

  3.二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。

  當(dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口。

  |a|越大,則拋物線的開口越小。

  決定對稱軸位置的因素

  4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對稱軸的位置。

  當(dāng)a與b同號時(shí)(即ab>0),對稱軸在y軸左;因?yàn)槿魧ΨQ軸在左邊則對稱軸小于0,也就是-b/2a<0,所以b/2a要大于0,所以a、b要同號

  當(dāng)a與b異號時(shí)(即ab<0),對稱軸在y軸右。因?yàn)閷ΨQ軸在右邊則對稱軸要大于0,也就是-b2a="">0,所以b/2a要小于0,所以a、b要異號

  可簡單記憶為左同右異,即當(dāng)a與b同號時(shí)(即ab>0),對稱軸在y軸左;當(dāng)a與b異號時(shí)(即ab<0),對稱軸在y軸右。

  事實(shí)上,b有其自身的幾何意義:拋物線與y軸的交點(diǎn)處的該拋物線切線的函數(shù)解析式(一次函數(shù))的斜率k的值?赏ㄟ^對二次函數(shù)求導(dǎo)得到。

  決定拋物線與y軸交點(diǎn)的因素

  5.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。

  拋物線與y軸交于(0,c)

  拋物線與x軸交點(diǎn)個(gè)數(shù)

  6.拋物線與x軸交點(diǎn)個(gè)數(shù)

  Δ=b^2-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。

  Δ=b^2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。

  Δ=b^2-4ac<0時(shí),拋物線與x軸沒有交點(diǎn)。X的取值是虛數(shù)(x=-b±√b^2-4ac的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)

  當(dāng)a>0時(shí),函數(shù)在x=-b/2a處取得最小值f(-b/2a)=4ac-b/4a;在{x|x<-b/2a}上是減函數(shù),在{x|x>-b/2a}上是增函數(shù);拋物線的開口向上;函數(shù)的值域是{y|y≥4ac-b^2/4a}相反不變

  當(dāng)b=0時(shí),拋物線的對稱軸是y軸,這時(shí),函數(shù)是偶函數(shù),解析式變形為y=ax^2c(a≠0)

  特殊值的形式

  7.特殊值的形式

 、佼(dāng)x=1時(shí)y=abc

 、诋(dāng)x=-1時(shí)y=a-bc

 、郛(dāng)x=2時(shí)y=4a2bc

 、墚(dāng)x=-2時(shí)y=4a-2bc

  二次函數(shù)的性質(zhì)

  8.定義域:R

  值域:(對應(yīng)解析式,且只討論a大于0的情況,a小于0的情況請讀者自行推斷)①[(4ac-b^2)/4a,

  正無窮);②[t,正無窮)

  奇偶性:當(dāng)b=0時(shí)為偶函數(shù),當(dāng)b≠0時(shí)為非奇非偶函數(shù)。

  周期性:無

  解析式:

 、賧=ax^2bxc[一般式]

 、臿≠0

 、芶>0,則拋物線開口朝上;a<0,則拋物線開口朝下;

 、菢O值點(diǎn):(-b/2a,(4ac-b^2)/4a);

 、圈=b^2-4ac,

  Δ>0,圖象與x軸交于兩點(diǎn):

  ([-b-√Δ]/2a,0)和([-b√Δ]/2a,0);

  Δ=0,圖象與x軸交于一點(diǎn):

  (-b/2a,0);

  Δ<0,圖象與x軸無交點(diǎn);

  ②y=a(x-h)^2k[頂點(diǎn)式]

  此時(shí),對應(yīng)極值點(diǎn)為(h,k),其中h=-b/2a,k=(4ac-b^2)/4a;

 、踶=a(x-x1)(x-x2)[交點(diǎn)式(雙根式)](a≠0)

  對稱軸X=(X1X2)/2當(dāng)a>0且X≧(X1X2)/2時(shí),Y隨X的增大而增大,當(dāng)a>0且X≦(X1X2)/2時(shí)Y隨X的增大而減小

  此時(shí),x1、x2即為函數(shù)與X軸的兩個(gè)交點(diǎn),將X、Y代入即可求出解析式(一般與一元二次方程連用)。

  交點(diǎn)式是Y=A(X-X1)(X-X2)知道兩個(gè)x軸交點(diǎn)和另一個(gè)點(diǎn)坐標(biāo)設(shè)交點(diǎn)式。兩交點(diǎn)X值就是相應(yīng)X1X2值。

  26.2用函數(shù)觀點(diǎn)看一元二次方程

  1.如果拋物線與x軸有公共點(diǎn),公共點(diǎn)的橫坐標(biāo)是,那么當(dāng)時(shí),函數(shù)的值是0,因此就是方程的一個(gè)根。

  2.二次函數(shù)的圖象與x軸的位置關(guān)系有三種:沒有公共點(diǎn),有一個(gè)公共點(diǎn),有兩個(gè)公共點(diǎn)。這對應(yīng)著一元二次方程根的三種情況:沒有實(shí)數(shù)根,有兩個(gè)相等的實(shí)數(shù)根,有兩個(gè)不等的實(shí)數(shù)根。

  26.3實(shí)際問題與二次函數(shù)

  在日常生活、生產(chǎn)和科研中,求使材料最省、時(shí)間最少、效率最高等問題,有些可歸結(jié)為求二次函數(shù)的最大值或最小值。

  二次函數(shù)

  提醒大家:上面的內(nèi)容是二次函數(shù)知識點(diǎn),請大家做好筆記了。

  平面直角坐標(biāo)系

  平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。

  水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。

  平面直角坐標(biāo)系的要素:

  ①在同一平面

 、趦蓷l數(shù)軸

  ③互相垂直

 、茉c(diǎn)重合

  三個(gè)規(guī)定:

 、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向

 、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。

  ③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

  平面直角坐標(biāo)系的構(gòu)成

  在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn)。

  通過上面對平面直角坐標(biāo)系的'構(gòu)成知識的講解學(xué)習(xí),希望同學(xué)們對上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。

  點(diǎn)的坐標(biāo)的性質(zhì)

  建立了平面直角坐標(biāo)系后,對于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過來,對于任何一個(gè)坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個(gè)點(diǎn)。

  對于平面內(nèi)任意一點(diǎn)C,過點(diǎn)C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應(yīng)點(diǎn)a,b分別叫做點(diǎn)C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(a,b)叫做點(diǎn)C的坐標(biāo)。

  一個(gè)點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。

  因式分解的一般步驟

  如果多項(xiàng)式有公因式就先提公因式,沒有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

  注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個(gè)范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個(gè)整式的積的形式。

  因式分解

  因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。

  因式分解要素:

 、俳Y(jié)果必須是整式

 、诮Y(jié)果必須是積的形式

  ③結(jié)果是等式

 、芤蚴椒纸馀c整式乘法的關(guān)系:m(a+b+c)

  公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。

  公因式確定方法:

 、傧禂(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。

 、谙嗤帜溉∽畹痛蝺

 、巯禂(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。

  提取公因式步驟:

  ①確定公因式。

  ②確定商式

 、酃蚴脚c商式寫成積的形式。

  分解因式注意;

 、俨粶(zhǔn)丟字母

  ②不準(zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)

 、垭p重括號化成單括號

 、芙Y(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列

 、菹嗤蚴綄懗蓛绲男问

  ⑥首項(xiàng)負(fù)號放括號外

 、呃ㄌ杻(nèi)同類項(xiàng)合并。

  數(shù)學(xué)二次函數(shù)知識點(diǎn)總結(jié) 2

  1.二次函數(shù)的概念

  二次函數(shù)的概念:一般地,形如(是常數(shù),)的函數(shù),叫做二次函數(shù)。這里需要強(qiáng)調(diào):和一元二次方程類似,二次項(xiàng)系數(shù),而可以為零.二次函數(shù)的定義域是全體實(shí)數(shù)。

  2.二次函數(shù)的結(jié)構(gòu)特征:

 、诺忍栕筮吺呛瘮(shù),右邊是關(guān)于自變量的二次式,的最高次數(shù)是2。

  ⑵是常數(shù),是二次項(xiàng)系數(shù),是一次項(xiàng)系數(shù),是常數(shù)項(xiàng)。

  2.初三數(shù)學(xué)二次函數(shù)的三種表達(dá)式

  一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)。頂點(diǎn)式:y=a(x-h)^2+k[拋物線的頂點(diǎn)P(h,k)]。

  交點(diǎn)式:y=a(x-x)(x-x)[僅限于與x軸有交點(diǎn)A(x,0)和B(x,0)的拋物線]。

  注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:h=-b/2ak=(4ac-b^2)/4ax,x=(-b±√b^2-4ac)/2a。

  3.二次函數(shù)的性質(zhì)

  1.性質(zhì):

  (1)在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b。

  (2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點(diǎn)。

  2.k,b與函數(shù)圖像所在象限:當(dāng)k>0時(shí),直線必通過一、三象限,y隨x的增大而增大;當(dāng)k<0時(shí),直線必通過二、四象限,y隨x的增大而減小。當(dāng)b>0時(shí),直線必通過一、二象限;當(dāng)b=0時(shí),直線通過原點(diǎn);當(dāng)b<0時(shí),直線必通過三、四象限。特別地,當(dāng)b=o時(shí),直線通過原點(diǎn)o(0,0)表示的`是正比例函數(shù)的圖像。這時(shí),當(dāng)k>0時(shí),直線只通過一、三象限;當(dāng)k<0時(shí),直線只通過二、四象限。

  4.初三數(shù)學(xué)二次函數(shù)圖像

  對于一般式:①y=ax2+bx+c與y=ax2-bx+c兩圖像關(guān)于y軸對稱。

 、趛=ax2+bx+c與y=-ax2-bx-c兩圖像關(guān)于x軸對稱。

  ③y=ax2+bx+c與y=-ax2-bx+c-b2/2a關(guān)于頂點(diǎn)對稱。

  ④y=ax2+bx+c與y=-ax2+bx-c關(guān)于原點(diǎn)中心對稱。(即繞原點(diǎn)旋轉(zhuǎn)180度后得到的圖形)

  對于頂點(diǎn)式:

 、賧=a(x-h)2+k與y=a(x+h)2+k兩圖像關(guān)于y軸對稱,即頂點(diǎn)(h,k)和(-h,k)關(guān)于y軸對稱,橫坐標(biāo)相反、縱坐標(biāo)相同。

 、趛=a(x-h)2+k與y=-a(x-h)2-k兩圖像關(guān)于x軸對稱,即頂點(diǎn)(h,k)和(h,-k)關(guān)于x軸對稱,橫坐標(biāo)相同、縱坐標(biāo)相反。

 、踶=a(x-h)2+k與y=-a(x-h)2+k關(guān)于頂點(diǎn)對稱,即頂點(diǎn)(h,k)和(h,k)相同,開口方向相反。

 、躽=a(x-h)2+k與y=-a(x+h)2-k關(guān)于原點(diǎn)對稱,即頂點(diǎn)(h,k)和(-h,-k)關(guān)于原點(diǎn)對稱,橫坐標(biāo)、縱坐標(biāo)都相反。(其實(shí)①③④就是對f(x)來說f(-x),-f(x),-f(-x)的情況)

  數(shù)學(xué)二次函數(shù)知識點(diǎn)總結(jié) 3

  一、 基本概念

  1.方程、方程的解(根)、方程組的解、解方程(組)

  2. 分類:

  二、 解方程的依據(jù)—等式性質(zhì)

  1.a=b←→a+c=b+c

  2.a=b←→ac=bc (c≠0)

  三、 解法

  1.一元一次方程的解法:去分母→去括號→移項(xiàng)→合并同類項(xiàng)→

  系數(shù)化成1→解。

  2. 元一次方程組的解法:⑴基本思想:“消元”⑵方法:①代入法

  ②加減法

  四、 一元二次方程

  1.定義及一般形式:

  2.解法:⑴直接開平方法(注意特征)

  ⑵配方法(注意步驟—推倒求根公式)

 、枪椒ǎ

 、纫蚴椒纸夥(特征:左邊=0)

  3.根的判別式:

  4.根與系數(shù)頂?shù)年P(guān)系:

  逆定理:若 ,則以 為根的`一元二次方程是: 。

  5.常用等式:

  五、 可化為一元二次方程的方程

  1.分式方程

 、哦x

  ⑵基本思想:

 、腔窘夥ǎ孩偃シ帜阜á趽Q元法(如, )

 、闰(yàn)根及方法

  2.無理方程

 、哦x

  ⑵基本思想:

 、腔窘夥ǎ孩俪朔椒(注意技巧!!)②換元法(例, )⑷驗(yàn)根及方法

  3.簡單的二元二次方程組

  由一個(gè)二元一次方程和一個(gè)二元二次方程組成的二元二次方程組都可用代入法解。

  六、 列方程(組)解應(yīng)用題

  一概述

  列方程(組)解應(yīng)用題是中學(xué)數(shù)學(xué)聯(lián)系實(shí)際的一個(gè)重要方面。其具體步驟是:

 、艑忣}。理解題意。弄清問題中已知量是什么,未知量是什么,問題給出和涉及的相等關(guān)系是什么。

 、圃O(shè)元(未知數(shù))。①直接未知數(shù)②間接未知數(shù)(往往二者兼用)。一般來說,未知數(shù)越多,方程越易列,但越難解。

 、怯煤粗獢(shù)的代數(shù)式表示相關(guān)的量。

  ⑷尋找相等關(guān)系(有的由題目給出,有的由該問題所涉及的等量關(guān)系給出),列方程。一般地,未知數(shù)個(gè)數(shù)與方程個(gè)數(shù)是相同的。

  ⑸解方程及檢驗(yàn)。

 、蚀鸢。

  綜上所述,列方程(組)解應(yīng)用題實(shí)質(zhì)是先把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題(設(shè)元、列方程),在由數(shù)學(xué)問題的解決而導(dǎo)致實(shí)際問題的解決(列方程、寫出答案)。在這個(gè)過程中,列方程起著承前啟后的作用。因此,列方程是解應(yīng)用題的關(guān)鍵。

  二常用的相等關(guān)系

  1. 行程問題(勻速運(yùn)動)

  基本關(guān)系:s=vt

 、畔嘤鰡栴}(同時(shí)出發(fā)):

  + = ;

  ⑵追及問題(同時(shí)出發(fā)):

  若甲出發(fā)t小時(shí)后,乙才出發(fā),而后在B處追上甲,則

 、撬泻叫校 ;

  2. 配料問題:溶質(zhì)=溶液×濃度

  溶液=溶質(zhì)+溶劑

  3.增長率問題:

  4.工程問題:基本關(guān)系:工作量=工作效率×工作時(shí)間(常把工作量看著單位“1”)。

  5.幾何問題:常用勾股定理,幾何體的面積、體積公式,相似形及有關(guān)比例性質(zhì)等。

  數(shù)學(xué)二次函數(shù)知識點(diǎn)總結(jié) 4

  1二次函數(shù)的定義

  一般地,形如y=ax2+bx+c(a,b,c為常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù).如y=3x2,y=3x2-2,y=2x2+x-1等都是二次函數(shù).

  注意:(1)二次函數(shù)是關(guān)于自變量的二次式,二次項(xiàng)系數(shù)a必須是非零實(shí)數(shù),即a≠0,而b,c是任意實(shí)數(shù),二次函數(shù)的表達(dá)式是一個(gè)整式;

  (2)二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0),自變量x的取值范圍是全體實(shí)數(shù);

  (3)當(dāng)b=c=0時(shí),二次函數(shù)y=ax2是最簡單的二次函數(shù);

  (4)一個(gè)函數(shù)是否是二次函數(shù),要化簡整理后,對照定義才能下結(jié)論,例如y=x2-x(x-1)化簡后變?yōu)閥=x,故它不是二次函數(shù).

  2二次函數(shù)解析式的幾種形式

  (1)一般式:y=ax2+bx+c (a,b,c為常數(shù),a≠0).

  (2)頂點(diǎn)式:y=a(x-h)2+k(a,h,k為常數(shù),a≠0).

  (3)兩根式:y=a(x-x1)(x-x2),其中x1,x2是拋物線與x軸的交點(diǎn)的橫坐標(biāo),即一元二次方程ax2+bx+c=0的兩個(gè)根,a≠0.

  說明:(1)任何一個(gè)二次函數(shù)通過配方都可以化為頂點(diǎn)式y(tǒng)=a(x-h)2+k,拋物線的頂點(diǎn)坐標(biāo)是(h,k),h=0時(shí),拋物線y=ax2+k的頂點(diǎn)在y軸上;當(dāng)k=0時(shí),拋物線a(x-h)2的頂點(diǎn)在x軸上;當(dāng)h=0且k=0時(shí),拋物線y=ax2的`頂點(diǎn)在原點(diǎn)

  3二次函數(shù)y=ax2+c的圖象與性質(zhì)

  (1)拋物線y=ax2+c的形狀由a決定,位置由c決定.

  (2)二次函數(shù)y=ax2+c的圖象是一條拋物線,頂點(diǎn)坐標(biāo)是(0,c),對稱軸是y軸.

  當(dāng)a>0時(shí),圖象的開口向上,有最低點(diǎn)(即頂點(diǎn)),當(dāng)x=0時(shí),y最小值=c.在y軸左側(cè),y隨x的增大而減小;在y軸右側(cè),y隨x增大而增大.

  當(dāng)a<0時(shí),圖象的開口向下,有最高點(diǎn)(即頂點(diǎn)),當(dāng)x=0時(shí),y最大值=c.在y軸左側(cè),y隨x的增大而增大;在y軸右側(cè),y隨x增大而減小.

  (3)拋物線y=ax2+c與y=ax2的關(guān)系.

  拋物線y=ax2+c與y=ax2形狀相同,只有位置不同.拋物線y=ax2+c可由拋物線y=ax2沿y軸向上或向下平行移動|c|個(gè)單位得到.當(dāng)c>0時(shí),向上平行移動,當(dāng)c<0時(shí),向下平行移動.

  數(shù)學(xué)二次函數(shù)知識點(diǎn)總結(jié) 5

  一、二次函數(shù)概念:

  a0)b,c是常數(shù)

  1.二次函數(shù)的概念:一般地,形如yax2bxc(a,的函數(shù),叫做二次函數(shù)。這c可以為零.二次函數(shù)的定義域是全體實(shí)里需要強(qiáng)調(diào):和一元二次方程類似,二次項(xiàng)系數(shù)a0,而b,數(shù).

  2.二次函數(shù)yax2bxc的結(jié)構(gòu)特征:

  ⑴等號左邊是函數(shù),右邊是關(guān)于自變量x的二次式,x的最高次數(shù)是2.b,c是常數(shù),a是二次項(xiàng)系數(shù),b是一次項(xiàng)系數(shù),c是常數(shù)項(xiàng).

 、芶,二、二次函數(shù)的基本形式

  1.二次函數(shù)基本形式:yax2的性質(zhì):a的絕對值越大,拋物線的開口越小。

  a的符號a0開口方向頂點(diǎn)坐標(biāo)對稱軸向上00,00,性質(zhì)x0時(shí),y隨x的增大而增大;x0時(shí),y隨y軸x的增大而減小;x0時(shí),y有最小值0.x0時(shí),y隨x的增大而減小;x0時(shí),y隨a0向下y軸x的增大而增大;x0時(shí),y有最大值0.

  2.yax2c的性質(zhì):上加下減。

  a的符號a0開口方向頂點(diǎn)坐標(biāo)對稱軸向上c0,c0,性質(zhì)x0時(shí),y隨x的增大而增大;x0時(shí),y隨y軸x的增大而減小;x0時(shí),y有最小值c.x0時(shí),y隨x的增大而減小;x0時(shí),y隨a0向下y軸x的增大而增大;x0時(shí),y有最大值c.

  3.yaxh的性質(zhì):左加右減。

  2a的符號a0開口方向頂點(diǎn)坐標(biāo)對稱軸向上0h,0h,性質(zhì)xh時(shí),y隨x的增大而增大;xh時(shí),y隨X=hx的增大而減小;xh時(shí),y有最小值0.xh時(shí),y隨x的增大而減;xh時(shí),y隨a02向下X=hx的增大而增大;xh時(shí),y有最大值0.

  4.yaxhk的性質(zhì):

  a的符號開口方向頂點(diǎn)坐標(biāo)對稱軸性質(zhì)a0向上h,kh,kX=hxh時(shí),y隨x的增大而增大;xh時(shí),y隨x的增大而減小;xh時(shí),y有最小值k.xh時(shí),y隨x的增大而減;xh時(shí),y隨a0向下X=hx的增大而增大;xh時(shí),y有最大值k.

  三、二次函數(shù)圖象的平移

  1.平移步驟:

  方法一:

  ⑴將拋物線解析式轉(zhuǎn)化成頂點(diǎn)式y(tǒng)axhk,確定其頂點(diǎn)坐標(biāo)h,k;

 、票3謷佄锞yax2的形狀不變,將其頂點(diǎn)平移到h,k處,具體平移方法如下:

  向上(k>0)【或向下(k0)【或左(h0)【或左(h0)【或下(k0)【或左(h0)【或下(k

  畫草圖時(shí)應(yīng)抓住以下幾點(diǎn):開口方向,對稱軸,頂點(diǎn),與x軸的交點(diǎn),與y軸的交點(diǎn).

  六、二次函數(shù)yax2bxc的性質(zhì)

  b4acb2b1.當(dāng)a0時(shí),拋物線開口向上,對稱軸為x,頂點(diǎn)坐標(biāo)為,.

  2a4a2a當(dāng)xbbb時(shí),y隨x的增大而減;當(dāng)x時(shí),y隨x的增大而增大;當(dāng)x時(shí),y有最小2a2a2a4acb2值.

  4ab4acb2bb2.當(dāng)a0時(shí),拋物線開口向下,對稱軸為x,頂點(diǎn)坐標(biāo)為,時(shí),y隨.當(dāng)x2a4a2a2a4acb2bb.x的增大而增大;當(dāng)x時(shí),y隨x的增大而減;當(dāng)x時(shí),y有最大值

  2a2a4a

  七、二次函數(shù)解析式的表示方法

  1.一般式:yax2bxc(a,b,c為常數(shù),a0);

  2.頂點(diǎn)式:ya(xh)2k(a,h,k為常數(shù),a0);

  3.兩根式:ya(xx1)(xx2)(a0,x1,x2是拋物線與x軸兩交點(diǎn)的橫坐標(biāo)).

  注意:任何二次函數(shù)的解析式都可以化成一般式或頂點(diǎn)式,但并非所有的二次函數(shù)都可以寫成交點(diǎn)式,只有拋物線與x軸有交點(diǎn),即b24ac0時(shí),拋物線的解析式才可以用交點(diǎn)式表示.二次函數(shù)解析式的這三種形式可以互化.

  八、二次函數(shù)的圖象與各項(xiàng)系數(shù)之間的.關(guān)系

  1.二次項(xiàng)系數(shù)a

  二次函數(shù)yax2bxc中,a作為二次項(xiàng)系數(shù),顯然a0.

 、女(dāng)a0時(shí),拋物線開口向上,a的值越大,開口越小,反之a(chǎn)的值越小,開口越大;

  ⑵當(dāng)a0時(shí),拋物線開口向下,a的值越小,開口越小,反之a(chǎn)的值越大,開口越大.

  總結(jié)起來,a決定了拋物線開口的大小和方向,a的正負(fù)決定開口方向,a的大小決定開口的大。

  2.一次項(xiàng)系數(shù)b

  在二次項(xiàng)系數(shù)a確定的前提下,b決定了拋物線的對稱軸.

 、旁赼0的前提下,當(dāng)b0時(shí),當(dāng)b0時(shí),當(dāng)b0時(shí),b0,即拋物線的對稱軸在y軸左側(cè);2ab0,即拋物線的對稱軸就是y軸;2ab0,即拋物線對稱軸在y軸的右側(cè).2a⑵在a0的前提下,結(jié)論剛好與上述相反,即當(dāng)b0時(shí),當(dāng)b0時(shí),當(dāng)b0時(shí),b0,即拋物線的對稱軸在y軸右側(cè);2ab0,即拋物線的對稱軸就是y軸;2ab0,即拋物線對稱軸在y軸的左側(cè).2a

  總結(jié)起來,在a確定的前提下,b決定了拋物線對稱軸的位置.

  ab的符號的判定:對稱軸xb在y軸左邊則ab0,在y軸的右側(cè)則ab0,概括的說就是“左同2a右異”總結(jié):

  3.常數(shù)項(xiàng)c

 、女(dāng)c0時(shí),拋物線與y軸的交點(diǎn)在x軸上方,即拋物線與y軸交點(diǎn)的縱坐標(biāo)為正;

 、飘(dāng)c0時(shí),拋物線與y軸的交點(diǎn)為坐標(biāo)原點(diǎn),即拋物線與y軸交點(diǎn)的縱坐標(biāo)為0;

 、钱(dāng)c0時(shí),拋物線與y軸的交點(diǎn)在x軸下方,即拋物線與y軸交點(diǎn)的縱坐標(biāo)為負(fù).總結(jié)起來,c決定了拋物線與y軸交點(diǎn)的位置.

  b,c都確定,那么這條拋物線就是唯一確定的.總之,只要a,二次函數(shù)解析式的確定:

  根據(jù)已知條件確定二次函數(shù)解析式,通常利用待定系數(shù)法.用待定系數(shù)法求二次函數(shù)的解析式必須根據(jù)題目的特點(diǎn),選擇適當(dāng)?shù)男问剑拍苁菇忸}簡便.一般來說,有如下幾種情況:

  1.已知拋物線上三點(diǎn)的坐標(biāo),一般選用一般式;

  2.已知拋物線頂點(diǎn)或?qū)ΨQ軸或最大(小)值,一般選用頂點(diǎn)式;

  3.已知拋物線與x軸的兩個(gè)交點(diǎn)的橫坐標(biāo),一般選用兩根式;

  4.已知拋物線上縱坐標(biāo)相同的兩點(diǎn),常選用頂點(diǎn)式.

  九、二次函數(shù)圖象的對稱

  二次函數(shù)圖象的對稱一般有五種情況,可以用一般式或頂點(diǎn)式表達(dá)

  1.關(guān)于x軸對稱

  yax2bxc關(guān)于x軸對稱后,得到的解析式是yax2bxc;

  yaxhk關(guān)于x軸對稱后,得到的解析式是yaxhk;

  2.關(guān)于y軸對稱

  yax2bxc關(guān)于y軸對稱后,得到的解析式是yax2bxc;

  22yaxhk關(guān)于y軸對稱后,得到的解析式是yaxhk;

  3.關(guān)于原點(diǎn)對稱

  yax2bxc關(guān)于原點(diǎn)對稱后,得到的解析式是yax2bxc;yaxhk關(guān)于原點(diǎn)對稱后,得到的解析式是yaxhk;

  4.關(guān)于頂點(diǎn)對稱(即:拋物線繞頂點(diǎn)旋轉(zhuǎn)180°)

  2222b2yaxbxc關(guān)于頂點(diǎn)對稱后,得到的解析式是yaxbxc;

  2a22yaxhk關(guān)于頂點(diǎn)對稱后,得到的解析式是yaxhk.n對稱

  5.關(guān)于點(diǎn)m,n對稱后,得到的解析式是yaxh2m2nkyaxhk關(guān)于點(diǎn)m,根據(jù)對稱的性質(zhì),顯然無論作何種對稱變換,拋物線的形狀一定不會發(fā)生變化,因此a永遠(yuǎn)不變.求拋物線的對稱拋物線的表達(dá)式時(shí),可以依據(jù)題意或方便運(yùn)算的原則,選擇合適的形式,習(xí)慣上是先確定原拋物線(或表達(dá)式已知的拋物線)的頂點(diǎn)坐標(biāo)及開口方向,再確定其對稱拋物線的頂點(diǎn)坐標(biāo)及開口方向,然后再寫出其對稱拋物線的表達(dá)式.

  十、二次函數(shù)與一元二次方程:

  1.二次函數(shù)與一元二次方程的關(guān)系(二次函數(shù)與x軸交點(diǎn)情況):

  一元二次方程ax2bxc0是二次函數(shù)yax2bxc當(dāng)函數(shù)值y0時(shí)的特殊情況.圖象與x軸的交點(diǎn)個(gè)數(shù):

 、佼(dāng)b24ac0時(shí),圖象與x軸交于兩點(diǎn)Ax1,0,Bx2,0(x1x2),其中的x1,x2是一元二次

  b24ac方程axbxc0a0的兩根.這兩點(diǎn)間的距離ABx2x1.

  a2

 、诋(dāng)0時(shí),圖象與x軸只有一個(gè)交點(diǎn);

  ③當(dāng)0時(shí),圖象與x軸沒有交點(diǎn).

  1"當(dāng)a0時(shí),圖象落在x軸的上方,無論x為任何實(shí)數(shù),都有y0;

  2"當(dāng)a0時(shí),圖象落在x軸的下方,無論x為任何實(shí)數(shù),都有y0.

  2.拋物線yax2bxc的圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c);

  3.二次函數(shù)常用解題方法總結(jié):

  ⑴求二次函數(shù)的圖象與x軸的交點(diǎn)坐標(biāo),需轉(zhuǎn)化為一元二次方程;

 、魄蠖魏瘮(shù)的最大(小)值需要利用配方法將二次函數(shù)由一般式轉(zhuǎn)化為頂點(diǎn)式;

 、歉鶕(jù)圖象的位置判斷二次函數(shù)yax2bxc中a,b,c的符號,或由二次函數(shù)中a,b,c的符號判斷圖象的位置,要數(shù)形結(jié)合;

  ⑷二次函數(shù)的圖象關(guān)于對稱軸對稱,可利用這一性質(zhì),求和已知一點(diǎn)對稱的點(diǎn)坐標(biāo),或已知與x軸的一個(gè)交點(diǎn)坐標(biāo),可由對稱性求出另一個(gè)交點(diǎn)坐標(biāo).

  ⑸與二次函數(shù)有關(guān)的還有二次三項(xiàng)式,二次三項(xiàng)式ax2bxc(a0)本身就是所含字母x的二次函數(shù);下面以a0時(shí)為例,揭示二次函數(shù)、二次三項(xiàng)式和一元二次方程之間的內(nèi)在聯(lián)系:

  0拋物線與x軸有兩個(gè)交點(diǎn)0二次三項(xiàng)式的值可正、可零、可負(fù)二次三項(xiàng)式的值為非負(fù)二次三項(xiàng)式的值恒為正一元二次方程有兩個(gè)不相等實(shí)根一元二次方程有兩個(gè)相等的實(shí)數(shù)根一元二次方程無實(shí)數(shù)根.0拋物線與x軸只有一個(gè)交點(diǎn)拋物線與x軸無交點(diǎn)y=2x2y=x2y=3(x+4)2二次函數(shù)圖像參考:

  y=3x2y=3(x-2)2y=x22

  y=2x2y=2(x-4)2y=2(x-4)2-3y=2x2+2y=2x2y=2x2-4x2y=-2y=-x2y=-2x2

  十一、函數(shù)的應(yīng)用

  剎車距離二次函數(shù)應(yīng)用何時(shí)獲得最大利潤

  最大面積是多少y=-2(x+3)2y=-2x2y=-2(x-3)2

【數(shù)學(xué)二次函數(shù)知識點(diǎn)總結(jié)】相關(guān)文章:

二次函數(shù)的知識點(diǎn)總結(jié)09-17

(優(yōu)秀)二次函數(shù)的知識點(diǎn)09-29

初中數(shù)學(xué)函數(shù)知識點(diǎn)總結(jié)04-08

(精華)二次函數(shù)的知識點(diǎn)總結(jié)8篇09-17

二次函數(shù)的知識點(diǎn)總結(jié)8篇(精品)09-18

二次函數(shù)數(shù)學(xué)教案06-30

二次函數(shù)數(shù)學(xué)教案10-28

數(shù)學(xué)二次函數(shù)教學(xué)反思07-29

高一數(shù)學(xué)函數(shù)的知識點(diǎn)總結(jié)05-28