平方根教案
平方根又叫二次方根,表示為:±根號,其中屬于非負數(shù)的平方根稱之為算術(shù)平方根。以下是小編為大家整理的平方根教案(精選8篇),歡迎閱讀,希望大家能夠喜歡。
平方根教案1
教學(xué)目標(biāo):
1.了解算術(shù)平方根的概念,會用根號表示正數(shù)的算術(shù)平方根,并了解算術(shù)平方根的非負性。
2.了解開方與乘方互為逆運算,會用平方運算求某些非負數(shù)的算術(shù)平方根。
教學(xué)重點:
算術(shù)平方根的概念。
教學(xué)難點:
根據(jù)算術(shù)平方根的概念正確求出非負數(shù)的算術(shù)平方根。
教學(xué)過程
一、情境導(dǎo)入
請同學(xué)們欣賞本節(jié)導(dǎo)圖,并回答問題,學(xué)校要舉行金秋美術(shù)作品比賽,小歐很高興,他想裁出一塊面積為25 的正方形畫布,畫上自己的得意之作參加比賽,這塊正方形畫布的邊長應(yīng)取多少 ?如果這塊畫布的面積是 ?這個問題實際上是已知一個正數(shù)的平方,求這個正數(shù)的問題?
這就要用到平方根的概念,也就是本章的主要學(xué)習(xí)內(nèi)容.這節(jié)課我們先學(xué)習(xí)有關(guān)算術(shù)平方根的概念。
二、導(dǎo)入新課:
1、提出問題:(書P68頁的問題)
你是怎樣算出畫框的邊長等于5dm的呢?(學(xué)生思考并交流解法)
這個問題相當(dāng)于在等式擴=25中求出正數(shù)x的值。
一般地,如果一個正數(shù)x的平方等于a,即 =a,那么這個正數(shù)x叫做a的算術(shù)平方根.a的算術(shù)平方根記為 ,讀作根號a,a叫做被開方數(shù)規(guī)定:0的算術(shù)平方根是0
也就是,在等式 =a (x0)中,規(guī)定x =
2、 試一試:你能根據(jù)等式: =144說出144的算術(shù)平方根是多少嗎?并用等式表示出來。
3、 想一想:下列式子表示什么意思?你能求出它們的值嗎?
建議:求值時,要按照算術(shù)平方根的意義,寫出應(yīng)該滿足的關(guān)系式,然后按照算術(shù)平方根的記法寫出對應(yīng)的值。例如 表示25的算術(shù)平方根。
4、例1 求下列各數(shù)的算術(shù)平方根:
(1)100;(2)1;(3) ;(4)0.0001
三、練習(xí)
P69練習(xí) 1、2
四、探究:(課本第69頁)
怎樣用兩個面積為1的小正方形拼成一個面積為2的大正方形?
方法1:課本中的方法,略;
方法2:
可還有其他方法,鼓勵學(xué)生探究。
問題:這個大正方形的邊長應(yīng)該是多少呢?
大正方形的邊長是 ,表示2的算術(shù)平方根,它到底是個多大的數(shù)?你能求出它的值嗎?
建議學(xué)生觀察圖形感受 的大小。小正方形的對角線的長是多少呢?(用刻度尺測量它與大正方形的邊長的大小)它的近似值我們將在下節(jié)課探究。
五、小結(jié):
1、這節(jié)課學(xué)習(xí)了什么呢?
2、算術(shù)平方根的具體意義是怎么樣的?
3、怎樣求一個正數(shù)的算術(shù)平方根?
六、課外作業(yè):
P75習(xí)題13.1活動第1、2、3題
平方根教案2
教學(xué)目標(biāo):
知識與技能:了解平方根與算術(shù)平方根的概念,理解負數(shù)沒有平方根及非負數(shù)開平方的意義。
過程與方法:理解開平方與平方是一對互逆的運算,會用平方根的概念求某些數(shù)的平方根,并能用根號加以表示,能用科學(xué)計算器求平方根及其近似值。
情感、態(tài)度與價值觀:體會平方與開平方這一對互逆運算的辯證關(guān)系,感受平方根在現(xiàn)實世界中的客觀存在,增強數(shù)學(xué)知識的應(yīng)用意識。
教學(xué)重點
理解開平方與平方是一對互逆的運算,會用平方根的概念求某些數(shù)的平方根,并能用根號加以表示。
教學(xué)難點
會用平方根的概念求某些數(shù)的平方根,并能用根號加以表示。
教具準備
小黑板、科學(xué)計算器
教學(xué)過程
一、導(dǎo)入
1、通過七年級的學(xué)習(xí),相信同學(xué)們都對數(shù)學(xué)這門課程有了更深入的認識,這個學(xué)期,我們將一起來學(xué)習(xí)八年級的數(shù)學(xué)知識,這個學(xué)期的知識將會更加有趣。
2、板書:實數(shù) 1.1 平方根
二、新授
(一)探求新知
1、探討:有面積為8平方厘米的正方形嗎?如果有,那它的邊長是多少?(少數(shù)學(xué)習(xí)超前的學(xué)生可能能答上來)這個邊長是個怎樣的數(shù)?你以前見過嗎?
2、引入“無理數(shù)”的概念:像(2.82842712……)這樣無限不循環(huán)的小數(shù)就叫做無理數(shù)。
3、你還能舉出哪些無理數(shù)?( )1/3是無理數(shù)嗎?
4、有理數(shù)和無理數(shù)統(tǒng)稱為實數(shù)。
(二)知識歸納:
1、板書:1.1平方根
2、李老師家裝修廚房,鋪地磚10.8平方米,用去正方形的地磚120塊,你能算出所用地磚的邊長是多少嗎?(0.3米)
3、怎么算?每塊地磚的面積是:10.8120=0.09平方米。
由于0.32=0.09,因此面積為0.09平方米的正方形,它的邊長為0.3米。
4、練習(xí):
由于( )=400,因此面積為400平方厘米的正方形,它的邊長為( )厘米。
5、在實際問題中,我們常常遇到要找一個數(shù),使它的平方等于給定的數(shù),如已知一個數(shù)a,要求r,使r2=a,那么我們就把r叫做a的一個平方根。(也可叫做二次方根)
例如22=4,因此2是4的一個平方根;62=36,因此6是36的一個平方根。
6、說一說:9,16,25,49的一個平方根是多少?
(三)探求新知:
1、4的平方根除了2以外,還有別的數(shù)嗎?
2、學(xué)生探究:因為(-2)2=4,因此-2也是4的一個平方根。
3、除了2和-2以外,4的平方根還有別的數(shù)嗎?(4的平方根有且只有兩個:2與-2。)
4、結(jié)論:如果r是正數(shù)a的一個平方根,那么a的平方根有且只有兩個:r與-r。
5、我們把a的正平方根叫做a的算術(shù)平方根,記作,讀作:“根號a”;把a的負平方根記作-。
6、0的平方根有且只有一個:0的平方根記作,即=0。
7、負數(shù)沒有平方根。
8、求一個非負數(shù)的平方根,叫做開平方。
(四)鞏固練習(xí):
1、分別求下列各數(shù)的平方根:36,25/9,1.21。
(6和-6,5/3和-5/3,1.1和-1.1)(也可用號表示)
2、分別求下列各數(shù)的算術(shù)平方根:100,16/25,0.49。(10,4/5,0.7)
三、小結(jié)與提高:
1、面積是196平方厘米的正方形,它的邊長是多少厘米?
2、求算術(shù)平方根:81,25/144,0.16
平方根教案3
一、內(nèi)容和內(nèi)容解析
內(nèi)容
無限不循環(huán)小數(shù);求算術(shù)平方根的更一般的方法———用有理數(shù)估算、用計算器求值。
內(nèi)容解析
無限不循環(huán)小數(shù)的引入,教科書是通過用有理數(shù)估計的大小,得到的越來越精確的近似值,進而發(fā)現(xiàn)是一個無限不循環(huán)小數(shù)的結(jié)論。發(fā)現(xiàn)無限不循環(huán)小數(shù)的過程就是反復(fù)運用有理數(shù)估計無理數(shù)的大小的過程。
用有理數(shù)估計(一個帶算術(shù)平方根符號的)無理數(shù)的大致范圍,通常利用與被開方數(shù)比較接近的完全平方數(shù)的算術(shù)平方根來估計這個被開方數(shù)的算術(shù)平方根的大小,這種估算在生活中經(jīng)常遇到,是學(xué)生生活中需要的一種能力。
使用計算器可以求任何正數(shù)的平方根,但不同品牌的計算器,按鍵順序可能不同,教學(xué)中,可以讓學(xué)生根據(jù)計算器品牌,參考使用說明書,學(xué)習(xí)使用計算器求算術(shù)平方根的方法。這完全可以讓學(xué)生自己完成。
基于以上分析,確定本節(jié)課的教學(xué)重點為:用有理數(shù)估計一個(帶算術(shù)平方根符號的)無理數(shù)的大致范圍。
二、目標(biāo)和目標(biāo)解析
教學(xué)目標(biāo)
。1)通過估算,體驗“無限不循環(huán)小數(shù)”的含義,能用估算求一個數(shù)的算術(shù)平方根的近似值。
。2)會利用計算器求一個正數(shù)的算術(shù)平方根;理解被開方數(shù)擴大(或縮。┡c它的算術(shù)平方根擴大(或縮小)的規(guī)律。
目標(biāo)解析
。1)學(xué)生了解“無限不循環(huán)小數(shù)”是指小數(shù)位數(shù)無限,且小數(shù)部分不循環(huán)的小數(shù),感受這是不同于有理數(shù)的一類新數(shù);對于估算,學(xué)生要會利用估算比較大。涣私鈯A逼法,采用不足近似值和過剩近似值來估計一個數(shù)的范圍。
。2)學(xué)生會概述利用計算器求一個正數(shù)的算術(shù)平方根的程序(按鍵的順序);明白利用計算器求一個正數(shù)的算術(shù)平方根,計算器顯示的結(jié)果可能是近似值;會利用作為工具的計算器探究算術(shù)平方根的規(guī)律,理解被開方數(shù)小數(shù)點向右或向左移動2位,它的算術(shù)平方根就相應(yīng)地向右或向左移動1位,即被開方數(shù)每擴大(或縮。100倍,它的算術(shù)平方根就擴大(或縮。10倍。
三、教學(xué)問題診斷分析
用有理數(shù)估計一個(帶算術(shù)平方根符號的)無理數(shù)的大致范圍,需要學(xué)生理解“算術(shù)平方根的被開方數(shù)越大,對應(yīng)的算術(shù)平方根也越大”的性質(zhì),還要判斷被開方數(shù)在哪兩個相鄰的整數(shù)平方數(shù)之間。為了讓學(xué)生體驗“無限不循環(huán)小數(shù)”的含義,還要多次采用“夾逼法”進行估計,即利用其一系列不足近似值和過剩近似值來估計它的大小,這些對學(xué)生綜合運用知識的能力有較高的要求。
基于以上分析,本課的教學(xué)難點是:用有理數(shù)估計一個(帶算術(shù)平方根符號的)無理數(shù)的大致范圍的過程,體驗“無限不循環(huán)小數(shù)”的含義。
四、教學(xué)過程設(shè)計
梳理舊知,引出新課
問題1
。1)什么是算術(shù)平方根?怎樣表示?
。2)負數(shù)有算術(shù)平方根嗎?
師生活動 學(xué)生回答,教師說明:我們上節(jié)課已經(jīng)能求出一些平方數(shù)的算術(shù)平方根了,例如:=4;但實際生活中,我們還會遇到被開方數(shù)不是一個數(shù)的平方數(shù)的情況,這時,它的算術(shù)平方根又該怎祥求呢?
設(shè)計意圖:復(fù)習(xí)與本節(jié)課相關(guān)的知識,通過設(shè)問,引出本節(jié)課學(xué)習(xí)內(nèi)容。
問題探究,學(xué)習(xí)新知
問題2 能否用兩個面積為1dm的小正方形拼成一個面積為2dm的大正方形?
師生活動:學(xué)生動手操作,在小組內(nèi)討論交流,教師展示剪拼方法。
追問(1) 拼成的這個面積為2dm的大正方形的邊長應(yīng)該是多少呢?
師生活動:學(xué)生自行解答,教師對解答有困難的學(xué)生進行指導(dǎo)。
追問(2) 小正方形的對角線的長是多少呢?
師生活動:學(xué)生根據(jù)圖形,不難回答,小正方形的對角線的長就是大正方形的邊長dm。
設(shè)計意圖:通過實際問題的操作探究,說明實際生活中確實存在被開方數(shù)不是一個數(shù)的平方數(shù)的情況,激發(fā)學(xué)生學(xué)習(xí)積極性,追問(2)主要為后面介紹用數(shù)軸上的點表示作準備。
問題3 有多大呢?為了弄清這個問題,請同學(xué)們探究“
在哪兩個整數(shù)之間呢?”
師生活動:先讓學(xué)生思考討論并估計大概有多大,由直觀可知大于1而小于2,教師引導(dǎo)學(xué)生利用“被開方數(shù)越大,對應(yīng)的算術(shù)平方根也越大”說明理由,教師板書推理過程。
追問(1) 那么是1點幾呢?你能不能得到的更精確的范圍?
師生活動:學(xué)生用試驗的方法可得到平方數(shù)小于2且最接近的1位小數(shù)是1.4,而平方數(shù)大于2且最接近的1位小數(shù)是1.5,所以大于1.4而小于1.5……,在此基礎(chǔ)上教師按教科書上的推理進行講解并板書。說明是一個無限不循環(huán)小數(shù),以及什么是無限不循環(huán)小數(shù)。并要求學(xué)生回憶以前學(xué)過的數(shù),進行比較。
追問(2) 實際上,許多正有理數(shù)的算術(shù)平方根,如等都是無限不循環(huán)小數(shù)。根據(jù)估計的大小的方法,請你估計的整數(shù)部分是多少?
設(shè)計意圖:通過對大小的估計,初步掌握利用的一系列不足近似值和過剩近似值來估計它的大小的方法,并從中體會是一個無限不循環(huán)小數(shù)。讓學(xué)生回憶以前學(xué)過的數(shù),通過比較,了解無限不循環(huán)小數(shù)的特征,為后面學(xué)習(xí)無理數(shù)打下基礎(chǔ)。
追問(2)主要為及時鞏固估算方法
用計算器,求算術(shù)根
例1 用計算器求下列各式的值:
師生活動:教師指導(dǎo)學(xué)生操作,獲得問題答案。解答完(2)后,讓學(xué)生與上面所估計的的大小進行比較,體會夾逼法的可行性。說明用計算器可以求出任意一個正數(shù)的算術(shù)平方根,但不同品牌的計算器,按鍵順序可能有所不同。用計算器求出的算術(shù)平方根,有的是準確值,如題(1),有的是近似值,如題(2)。
設(shè)計意圖:使學(xué)生會使用計算器求算術(shù)平方根。
練習(xí) 教科書第44頁練習(xí)1。
師生活動:學(xué)生獨立完成后交流。
設(shè)計意圖:鞏固計算器求算術(shù)平方根。
綜合應(yīng)用,鞏固所學(xué)
現(xiàn)在我們來解決本章引言中的問題。
問題4 (1)你會表示
(2)用計算器求(用科學(xué)記數(shù)法把結(jié)果寫成的形式,其中保留小數(shù)點后一位)
師生活動:學(xué)生理解題意,根據(jù)公式,可得,代入,利用計算器求出
設(shè)計意圖:讓學(xué)生體會計算器在解決實際問題中的應(yīng)用。
問題5 利用計算器計算下表中的算術(shù)平方根,并將計算結(jié)果填在表中。
師生活動:學(xué)生計算填表。
追問(1) 你發(fā)現(xiàn)了什么規(guī)律?
師生活動:學(xué)生思考、討論,教師歸納:被開方數(shù)的小數(shù)點向右或向左移動2位,它的算術(shù)平方根的小數(shù)點就相應(yīng)地向右或向左移動1位。
追問(2) 你能說出其中的道理嗎?
師生活動:學(xué)生討論,交流,教師引導(dǎo)學(xué)生從被開方數(shù)擴大的倍數(shù)與其算術(shù)平方根擴大的倍數(shù)思考回答。即當(dāng)被開方數(shù)擴大(或縮。100倍,10000倍…時,其算術(shù)平方根相應(yīng)地擴大(或縮。10倍,100倍…
追問(3) 用計算器計算
。ň_到0.001),并利用剛才的得到規(guī)律說出的近似值。
師生活動:學(xué)生計算,并根據(jù)所獲規(guī)律回答。
追問(4) 你能根據(jù)的值說出是多少嗎?
師生活動:學(xué)生回答,因為被開方數(shù)30與3不符合上述規(guī)律,所以無法由的值說出是多少。
設(shè)計意圖:鞏固用計算器求算術(shù)平方根以及其在探究規(guī)律中的應(yīng)用。
例2 小麗想用一塊面積為400cm
的長方形紙片,沿著邊的方向剪出一塊面積為300cm
的長方形紙片,使它的長寬之比為3:2。她不知能否裁得出來,正在發(fā)愁。小明見了說:“別發(fā)愁,一定能用一塊面積大的紙片裁出一塊面積小的紙片。”你同意小明的說法嗎?小麗能用這塊紙片裁出符合要求的紙片嗎?
師生活動:教師出示問題,學(xué)生理解題意,學(xué)生可能會和小明有同樣的想法,此時教師進行如下引導(dǎo):
。1)你能將這個問題轉(zhuǎn)化為數(shù)學(xué)問題嗎?
。2)如何求出長方形的長和寬?
。3)長方形的長和寬與正方形的邊長之間的大小關(guān)系是什么?
最后給出完整的解答過程。
設(shè)計意圖:讓學(xué)生體驗估算的實際應(yīng)用。
歸納小結(jié):
師生共同回顧本節(jié)課所學(xué)內(nèi)容,并請學(xué)生回答以下問題:
。1)利用夾逼法來求算術(shù)平方根的近似值的依據(jù)是什么?
。2)利用計算器可以求出任意正數(shù)的算術(shù)平方根或近似值嗎?
。3)被開方數(shù)擴大(或縮小)與它的算術(shù)平方根擴大(或縮。┑囊(guī)律是怎樣的呢?
。4)怎樣的數(shù)是無限不循環(huán)小數(shù)?
設(shè)計意圖:讓學(xué)生對本節(jié)課知識進行梳理,同時也幫助學(xué)生養(yǎng)成良好的習(xí)慣。
布置作業(yè):
教科書習(xí)題6.1第6、9、10題。
平方根教案4
教材分析:
《算術(shù)平方根》是人教版七年級下第六章第一節(jié),本節(jié)通過對實際生活中問題的解決,讓學(xué)生體驗數(shù)學(xué)與生活實際是緊密聯(lián)系著的。通過對這一節(jié)課的學(xué)習(xí),既可以讓學(xué)生了解算術(shù)平方根的概念,會用根號表示正數(shù)的算術(shù)平方根,并了解算術(shù)平方根的非負性,將為學(xué)生學(xué)習(xí)算術(shù)平方根奠定基礎(chǔ)。引入算術(shù)平方根的知識,要借助具體的生活情境,這樣才能加深對引入平方根知識必要性的認識。注意引導(dǎo)學(xué)生發(fā)現(xiàn)被開方數(shù)與對應(yīng)的算術(shù)平方根之間的關(guān)系。
本節(jié)課的開始就設(shè)置了一個問題情境,把這個問題情境抽象成數(shù)學(xué)問題就是已知正方形的面積求正方形的邊長,這是典型的求算術(shù)平方根的問題。由于所選數(shù)字簡單,可見其設(shè)計目的,并不著眼于計算,而在于鞏固概念。因此本節(jié)課的關(guān)鍵是抓住算術(shù)平方根概念的本質(zhì)特征,逐層深入,多個角度展示。
課標(biāo)要求:
在實際情境中理解算術(shù)平方根的概念及求法,并能解決簡單的問題,體驗數(shù)學(xué)與日常生活密切相關(guān),認識到許多實際問題可以借助數(shù)學(xué)方法來解決,并可以借助數(shù)學(xué)語言來表述和交流。
本節(jié)突出概念形成過程的教學(xué),首先列舉學(xué)生熟悉的例子,從生活問題中抽象出數(shù)學(xué)本質(zhì),引導(dǎo)學(xué)生觀察、分析后歸納,然后提出注意問題,幫助學(xué)生把握概念的本質(zhì)特征,再引導(dǎo)學(xué)生運用概念并及時反饋。同時在概念的形成過程中,著意培養(yǎng)學(xué)生觀察、分析、抽象、概括的能力。在本節(jié)課中,我利用學(xué)生的已有經(jīng)驗,通過思考、討論、探究等活動,使學(xué)生感受到做數(shù)學(xué)、用數(shù)學(xué)的價值。
策略分析:
根據(jù)教材內(nèi)容和編排特點,為了更有效地突出重點、突破難點、抓住關(guān)鍵,本節(jié)課按照學(xué)生的認知規(guī)律,遵循教師為主導(dǎo),學(xué)生為主體,訓(xùn)練為主線的原則,采用“自主探究法”和“引導(dǎo)發(fā)現(xiàn)法”為主,并根據(jù)學(xué)法指導(dǎo)自主性和差異性要求,讓學(xué)生在探究過程中理解理解算術(shù)平方根的概念。
教學(xué)目標(biāo):
1、經(jīng)歷算術(shù)平方根概念的形成過程,會用根號表示算術(shù)平方根,并了解算術(shù)平方根的非負性。
2、會用平方運算求非負數(shù)的算術(shù)平方根,包括完全平方數(shù)的算術(shù)平方根和部分非完全平方數(shù)的算術(shù)平方根。
教學(xué)重點:
理解算術(shù)平方根的概念。
教學(xué)難點:
根據(jù)算術(shù)平方根的概念正確求出非負數(shù)的算術(shù)平方根。
教學(xué)過程:
一、創(chuàng)設(shè)情境,導(dǎo)入新課
學(xué)校要舉行美術(shù)作品比賽,小鷗想裁出一塊面積為25 dm2的正方形油布,畫上自己的得意之作參加比賽,這塊正方形油布的邊長應(yīng)取多少?
。ㄔO(shè)計說明:用教材的問題作為導(dǎo)入材料,能夠和學(xué)生的課前預(yù)習(xí)活動對接,可以提高學(xué)生參與教學(xué)活動的廣度,從學(xué)生熟悉的數(shù)學(xué)經(jīng)驗入手,提出簡單的問題,激發(fā)學(xué)生自主學(xué)習(xí)的興趣和積極性,也自然引入新課。)
二、自主探究,發(fā)現(xiàn)新知
自學(xué)教材40頁內(nèi)容,思考:
1、什么是算術(shù)平方根?怎樣表示一個數(shù)的算術(shù)平方根?
2、1的算術(shù)平方根是多少?9的算術(shù)平方根是多少?16呢?怎樣求一個正數(shù)的算術(shù)平方根?正數(shù)的算術(shù)平方根的結(jié)果是什么數(shù)?
3、0的算術(shù)平方根是多少?為什么?
4、負數(shù)有算術(shù)平方根嗎?為什么?
。◣熒顒樱簩W(xué)生自學(xué)教材,結(jié)合探究提綱思考、練習(xí)、舉例、討論,教師做好板書準備后巡視檢查學(xué)生自學(xué)情況,深入學(xué)生中間交流,掌握學(xué)情,為展示交流做準備。)
設(shè)計意圖學(xué)生通過自主學(xué)習(xí),經(jīng)歷觀察、比較、抽象、概括的思維過程,理解算術(shù)平方根概念的實質(zhì),建立初步的數(shù)感和符號感,提高學(xué)生抽象思維水平。
三、學(xué)生交流,展示歸納
1、自主探究展示:
(1)算術(shù)平方根的概念和表示方法。
(2)求1,9,16,0的算術(shù)平方根。
2、合作探究展示:
負數(shù)沒有算術(shù)平方根,因為沒有任何數(shù)的平方的結(jié)果是負數(shù)。
3、歸納展示:
。1)一般地,如果一個正數(shù)x的平方等于a,即x2=a,那么這個正數(shù)x叫做a的算術(shù)平方根。記讀作“根號a”,a叫做被開方數(shù)。
。2)0的算術(shù)平方根是0。
4、舉例展示:(學(xué)生舉出算術(shù)平方根的例子。)
。◣熒顒樱航處熃Y(jié)合巡視檢查,讓中差生先展示,充分的暴露問題,再由中等生或優(yōu)等生糾錯、說理、補充、評價、修正。)
設(shè)計意圖通過展示交流,培養(yǎng)學(xué)生的“自主、合作、探究”能力,讓學(xué)生體驗“互逆”的數(shù)學(xué)思想方法,積累數(shù)學(xué)活動經(jīng)驗。
四、類比練習(xí),鞏固提升
(師生活動:學(xué)生結(jié)合例題的格式解答,抽3名學(xué)生上講臺板書,其他學(xué)生自主解答,從解題的過程、結(jié)果、格式等方面進行評價、糾錯、修訂、完善,教師給予適當(dāng)?shù)囊龑?dǎo)、點撥、評價。)
練習(xí)1:課本41頁練習(xí)1題。
。◣熒顒樱撼閷W(xué)生回答,其他同學(xué)評價、補充、修訂。)
練習(xí)2:課本41頁練習(xí)2題。
。◣熒顒樱撼閷W(xué)生上黑板完成,發(fā)動學(xué)生相互評價補充,教師重點提醒題,強調(diào)乘方的算術(shù)平方根的計算方法。)
練習(xí)3:下列各數(shù)有算術(shù)平方根嗎?如果有,求出來;如果沒有,請說明理由。
(師生活動:學(xué)生獨立解答,學(xué)生代表板書,學(xué)生相互評價,教師重點提醒題,加深對概念的理解和應(yīng)用。)
(師生活動:抽學(xué)生回答,發(fā)動其他同學(xué)評價、補充、修訂。)
設(shè)計意圖學(xué)生通過口答、計算、選擇,加深對算術(shù)平方根的概念及性質(zhì)的理解和應(yīng)用,提高學(xué)生分析問題和解決問題的能力。
五、回顧反思,強化提升
1、這節(jié)課你學(xué)到了什么?
2、你對大家有哪些建議或提醒?
。◣熒顒樱簩W(xué)生自主小結(jié),同學(xué)相互補充評價,教師補充完善。)
設(shè)計意圖引導(dǎo)學(xué)生從知識與技能、過程與方法、情感態(tài)度價值觀的三維目標(biāo)中總結(jié)自己的收獲,把握本節(jié)課的核心內(nèi)容,進一步體會互逆運算的數(shù)學(xué)思想方法。
六、當(dāng)堂檢測、知識過關(guān)
績優(yōu)學(xué)案32頁鞏固訓(xùn)練的1、2、3、4(1)(3)小題。
。◣熒顒樱簩W(xué)生獨立完成,教師手拿紅筆進行選擇性批閱,教師出示答案,學(xué)生自我評價,師生共同評價。)
設(shè)計意圖通過4測試題,再次加深學(xué)生對算術(shù)平方根的概念的理解和運用,及時反饋學(xué)生對本節(jié)課知識的掌握程度。
七、布置作業(yè)
1、必做題:習(xí)題6.1復(fù)習(xí)鞏固第1、2題。
2、選做題:績優(yōu)學(xué)案32頁典例探究3和鞏固訓(xùn)練的5題。
設(shè)計意圖體現(xiàn)課標(biāo)理念:“人人都能獲得良好的數(shù)學(xué)教育,不同的人在數(shù)學(xué)上得到不同的發(fā)展!北刈鲱}面向全體,選做題使學(xué)有余力的同學(xué)有發(fā)展的空間。
平方根教案5
教學(xué)目標(biāo):
(一)教學(xué)知識點
1.了解平方根的概念、開平方的概念
2.明確算術(shù)平方根與平方根的區(qū)別與聯(lián)系
3.進一步明確平方與開方是互為逆運算
(二)能力訓(xùn)練要求
1.加強概念形成過程的教學(xué),讓學(xué)生不僅掌握概念,而且知曉它的理論數(shù)據(jù)
2.提倡學(xué)生進行自學(xué),并能與同學(xué)互相交流與合作,變學(xué)會知識為會學(xué)知識
3.培養(yǎng)學(xué)生的求同和求異思維,能從相似的事物中觀察到的共同點和不同點
(三)情感與價值觀要求
通過學(xué)生在學(xué)習(xí)中互相幫助、相互合作,并能對不同概念進行區(qū)分,培養(yǎng)大家的團隊精神,以及認真仔細的學(xué)習(xí)態(tài)度,為學(xué)生將來走上社會而做準備,使他們能在工作中保持嚴謹?shù)膽B(tài)度,正確處理好人際關(guān)系,成為各方面的佼佼者
教學(xué)重點:
1.了解平方根、開平方的概念
2.了解開方與乘方是互逆的運算,會利用這個互逆運算關(guān)系求某些非負數(shù)的算術(shù)平方根和平方根
3.了解平方根與算術(shù)平方根的區(qū)別與聯(lián)系
教學(xué)難點:
1.平方根與算術(shù)平方根的區(qū)別與聯(lián)系
2.負數(shù)沒有平方根,即負數(shù)不能進行開平方運算的原因
教學(xué)方法:
討論比較法
即主要靠大家討論得出結(jié)論,同時對相似的概念進行比較。這樣不僅能正確區(qū)分這些概念,還能使學(xué)生學(xué)得更扎實
教學(xué)過程:
Ⅰ.創(chuàng)設(shè)問題情境,引入新課
上節(jié)課我們學(xué)習(xí)了算術(shù)平方根的概念,性質(zhì)知道若一個正數(shù)x的平方等于a,即x2=a。則x叫a的算術(shù)平方根,記作x=,而且也是非負數(shù),比如正數(shù)22=4,則2叫4的算術(shù)平方根,4叫2的平方,但是(-2)2=4,則-2叫4的什么根呢?下面我們就來討論這個問題。
Ⅱ.講授新課
1.平方根、開平方的概念
。蹘煟菡埓蠹蚁人伎純蓚問題
(1)9的算術(shù)平方根是3,也就是說,3的平方是9,還有其他的數(shù),它的平方也是9嗎?
(2)平方等于的數(shù)有幾個?平方等于0.64的數(shù)呢?
。凵-3的平方也是9的平方是,-的平方也是,即平方等于的數(shù)有兩個
。凵萜椒降扔9的數(shù)有兩個,平方等于的數(shù)有兩個,由此可知平方等于0.64的數(shù)也有兩個
。蹘煟莞鶕(jù)上一節(jié)課的內(nèi)容,我們知道了是9的算術(shù)平方根,是的算術(shù)平方根,那么-3,-叫9、的什么根呢?請大家認真看書后回答
[生]-3,-分別叫9、的平方根
[師]那是不是說3叫9的算術(shù)平方根,-3也叫9的算術(shù)平方根,即9的算術(shù)平方根有一個是3,另一個是-3呢?
[生]不對根據(jù)平方根的定義,一般地,如果一個數(shù)x的平方等于a,即x2=a,那么這個x就叫a的平方根(squareroot),也叫二次方根,3和-3的平方都等于9,由定義可知3和-3都是9的平方根,即9的平方根有兩個3和-3,9的算術(shù)平方根只有一個是3
。蹘煟萦善椒礁退阈g(shù)平方根的定義,大家能否找出它們有什么相同和不同之處呢?請分小組討論后選代表回答
。凵萜椒礁亩x中是有一個數(shù)x的平方等于a,則x叫a的平方根,x沒有肯定是正數(shù)還是負數(shù)或零;而算術(shù)平方根的定義中是有一個正數(shù)x的`平方等于a,則x叫a的算術(shù)平方根,這里的x只能是正數(shù)。由此看來都有x2=a,這是它們的相同之處,而x的要求不同,這是它們的不同之處
[師]這位同學(xué)分析判斷能力特棒,下面我再詳細作一總結(jié)
平方根與算術(shù)平方根的聯(lián)系與區(qū)別
聯(lián)系:
(1)具有包含關(guān)系:平方根包含算術(shù)平方根,算術(shù)平方根是平方根的一種
(2)存在條件相同:平方根和算術(shù)平方根都是只有非負數(shù)才有
(3)0的平方根,算術(shù)平方根都是0
區(qū)別:
(1)定義不同:“如果一個數(shù)的平方等于a,這個數(shù)就叫做a的平方根”;“非負數(shù)a的非負平方根叫a的算術(shù)平方根”
(2)個數(shù)不同:一個正數(shù)有兩個平方根,而一個正數(shù)的算術(shù)平方根只有一個
(3)表示法不同:正數(shù)a的平方根表示為±,正數(shù)a的算術(shù)平方根表示為
(4)取值范圍不同:正數(shù)的平方根一正一負,互為相反數(shù);正數(shù)的算術(shù)平方根只有一個
。蹘煟菔裁唇虚_平方呢?
[生]求一個數(shù)a的平方根的運算,叫開平方,其中a叫被開方數(shù)
。蹘煟菸覀児矊W(xué)了幾種運算呢,這幾種運算之間有怎樣的聯(lián)系呢?請大家討論后回答。
。凵菸覀児矊W(xué)了加、減、乘、除、乘方、開方六種運算。加與減互為逆運算,乘與除互為逆運算,乘方與開方互為逆運算
2.平方根的性質(zhì)
[師]請大家思考以下問題
(1)一個正數(shù)有幾個平方根
(2)0有幾個平方根?
(3)負數(shù)呢?
[生]第一個問題在前面已作過討論,一個正數(shù)9有兩個平方根3和-3;
因為只有零的平方為零,所以0有一個平方根是零
因為任何數(shù)的平方都不是負數(shù),所以負數(shù)沒有平方根,例如-3沒有平方根
[師]太精彩了。一個正數(shù)有兩個平方根,且它們互為相反數(shù);0有一個平方根是0,負數(shù)沒有平方根
3.講解例題
[例]求下列各數(shù)的平方根
(1)64;
(2);
(3)0.0004;
(4)(-25)2;
(5)11
4.想一想
(1)()2等于多少?()2等于多少?
(2)()2等于多少?
(3)對于正數(shù)a,()2等于多少?
、.課堂練習(xí)
(一)隨堂練習(xí)
1.求下列各數(shù)的'平方根
1)44,0,8,441,196,10-4
2)填空
(1)25的平方根是_________;
(2)=_________;
(3)()2=_________
(二)補充練習(xí)
1.判斷下列各數(shù)是否有平方根?并說明理由
(1)(-3)2;
(2)0;
(3)-0.01;
(4)-52;
(5)-a2;
(6)a2-2a+2
2.求下列各數(shù)的平方根。
(1)121;
(2)0.01;
(3)2;
(4)(-13)2;
(5)-(-4)3
、.課時小結(jié)
本節(jié)課學(xué)了如下內(nèi)容
1.平方根的概念
2.平方根的性質(zhì)
3.平方根與算術(shù)平方根的區(qū)別與聯(lián)系
4.求某些非負數(shù)的算術(shù)平方根和平方根
、.課后作業(yè)
習(xí)題2.4.
、.活動與探究
1.對于任意數(shù)a,一定等于a嗎?
2.中的被開方數(shù)a在什么情況下有意義,()2等于什么?
解:因為任意數(shù)的平方都是非負數(shù),也就是非負數(shù)才有平方根,所以被開方數(shù)a必須是正數(shù)或零,即非負數(shù)時有意義所以()2=a(a≥0)。
平方根教案6
教學(xué)目標(biāo)
1.了解算術(shù)平方根的概念,會求正數(shù)的算術(shù)平方根并會用符號表示
2.會用計算器求算術(shù)平方根
3.了解無限不循環(huán)小數(shù)的特點
數(shù)學(xué)思考
1.通過學(xué)習(xí)算術(shù)平方根,建立初步的數(shù)感和符號感,發(fā)展抽象思維
2.通過探究的大小,培養(yǎng)學(xué)生估算意識,了解兩個方向無限逼近的數(shù)學(xué)思想
解決問題
1.通過拼大正方形的活動,體現(xiàn)解決問題方法的多樣性,發(fā)展形象思維
2.在探究活動中,學(xué)會與人合作,并能與他人交流思維的過程和探究的結(jié)果
情感態(tài)度
1.通過學(xué)習(xí)算術(shù)平方根,認識數(shù)學(xué)與人類生活的密切聯(lián)系
2.通過探究活動,鍛煉克服困難的意志,建立自信心,提高學(xué)習(xí)熱情
教學(xué)重點、難點
重點:算術(shù)平方根的概念,感受無理數(shù)
難點:探究的大小的過程
教學(xué)過程與流程設(shè)計
活動1:創(chuàng)設(shè)情景,引入算術(shù)平方根
2003年10月16日,我國進行首次載人航天飛行取得圓滿成功。中華民族探索太空的千年夢想實現(xiàn)了。宇宙在脫離地球軌道進入正常運行軌道的速度要滿足一個條件,即介于第一宇宙速度與第二宇宙速度之間,第一宇宙速度和第二宇宙速度分別滿足:第一宇宙速度v1(米/秒):,第二宇宙速度v2(米/秒):
小歐同學(xué)準備參加學(xué)校舉行的美術(shù)作品比賽。他想裁出一塊面積為25d㎡的正方形畫布,畫上自己的得意之作參加比賽,請你幫他計算一下這塊正方形畫布的邊長應(yīng)取多少?
小歐還要準備一些面積如下的正方形畫布,請你幫他把這些正方形的邊長都算出來:
面積191636
邊長1346
上面的問題,實際上是已知一個正數(shù)的平方,求這個正數(shù)的問題
一般地,如果一個正數(shù)x的平方等于a,即,那么這個正數(shù)x叫做a的算術(shù)平方根,a的算術(shù)平方根記為,讀作“根號a”,a叫做“被開方數(shù)”。
規(guī)定:0的`算術(shù)平方根是0。
活動2:通過一些簡單例題,進一步了解算術(shù)平方根
1、你能求出下列各數(shù)的算術(shù)平方根嗎?
2、請同學(xué)們同桌之間合作,一位同學(xué)說一個正數(shù),另一位同學(xué)說出這個正數(shù)的算術(shù)平方根。
3、16的算術(shù)平方根等于
4、的值等于
5、的算術(shù)平方根等于
活動3:動動腦,動動手,探究的大小
你能用兩個面積為單位1的小正方形拼成一個大正方形嗎?
回答下列問題
。1)你所得的新正方形的面積是多少?
。2)新正方形的邊長是多少?
平方根教案7
學(xué)習(xí)目標(biāo):
1、在實際問題中,感受算術(shù)平方根存在的意義,理解算術(shù)平方根的概念,算術(shù)平方根具有雙重非負性。
2、會用計算器求一個數(shù)的算術(shù)平方根;利用計算器探究被開方數(shù)擴大(或縮小)與它的算術(shù)平方根擴大(或縮。┑囊(guī)律;
學(xué)習(xí)重點:
理解算術(shù)平方根的概念
學(xué)習(xí)難點:
算術(shù)平方根具有雙重非負性
學(xué)習(xí)過程:
一、學(xué)習(xí)準備
1、閱讀課本第3頁,由題意得出方程x= ,那么X= ,這種地磚一塊的邊長為 m
2、正數(shù)a有2個平方根,其中正數(shù)a的正的平方根,也叫做a的算術(shù)平方根。
例如,4的平方根是 , 叫做4的算術(shù)平方根,記作 =2,2的平方根是____, 叫做2的算術(shù)平方根
3、(1)16的算術(shù)平方根的平方根是什么? 5的算術(shù)平方根是什么?
。2)0的算術(shù)平方根是什么? 0的算術(shù)平方根有幾個?
。3)2、-5、-6有算術(shù)平方根嗎?為什么?
4、按課本第4頁例題1格式求下列各數(shù)的算術(shù)平方根:
。1)625(2)0. 81;(3)6;(4) (5) (6)
二、合作探究:
1、閱讀課本第5頁利用計算器求算術(shù)平方根的方法,利用計算器求下列各式的值。
2、利用計算器求下列各數(shù)的算術(shù)平方根
通過觀察算術(shù)平方根,歸納被開方數(shù)與算術(shù)平方根之間小數(shù)點的變化規(guī)律
3、在 中, 表示一個 數(shù), 表示一個 數(shù),算術(shù)平方根具有
練習(xí):若a-5+ =0,則 的平方根是
三、學(xué)習(xí):
本節(jié)課你學(xué)到哪些知識?哪些地方是我們要注意的?你還有哪些疑惑?
四、自我測試:
1、判斷下列說法是否正確:
、5是25的算術(shù)平方根;( )
②-6是 的算術(shù)平方根; ( )
③ 0的算術(shù)平方根是0;( )
④ 0.01是0.1的算術(shù)平方根; ( )
、菀粋正方形的邊長就是這個正方形的面積的算術(shù)平方根. ( )
2、若 =2.291, =7.246,那么 =( )
A.22.91 B. 72.46 C.229.1 D.724.6
3、下列各式哪些有意義,哪些沒有意義?
4、求下列各數(shù)的算術(shù)平方根
、121 ②2.25 ③ ④(-3)2
5、求下列各式的值 ① ② ③ ④
平方根教案8
一、教學(xué)目標(biāo)
1.理解一個數(shù)平方根和算術(shù)平方根的意義;
2.理解根號的意義,會用根號表示一個數(shù)的平方根和算術(shù)平方根;
3.通過本節(jié)的訓(xùn)練,提高學(xué)生的邏輯思維能力;
4.通過學(xué)習(xí)乘方和開方運算是互為逆運算,體驗各事物間的對立統(tǒng)一的辯證關(guān)系,激發(fā)學(xué)生探索數(shù)學(xué)奧秘的興趣。
二、教學(xué)重點和難點
教學(xué)重點:平方根和算術(shù)平方根的概念及求法。
教學(xué)難點:平方根與算術(shù)平方根聯(lián)系與區(qū)別。
三、教學(xué)方法
講練結(jié)合
四、教學(xué)手段
幻燈片
五、教學(xué)過程
。ㄒ唬┨釂
1、已知一正方形面積為50平方米,那么它的邊長應(yīng)為多少?
2、已知一個數(shù)的平方等于1000,那么這個數(shù)是多少?
3、一只容積為0.125立方米的正方體容器,它的棱長應(yīng)為多少?
這些問題的共同特點是:已知乘方的結(jié)果,求底數(shù)的值,如何解決這些問題呢?這就是本節(jié)內(nèi)容所要學(xué)習(xí)的。下面作一個小練習(xí):填空
1、()2=9;
2、()2 =0.25;
3、()2=0.0081
學(xué)生在完成此練習(xí)時,最容易出現(xiàn)的錯誤是丟掉負數(shù)解,在教學(xué)時應(yīng)注意糾正。
由練習(xí)引出平方根的概念。
。ǘ┢椒礁拍
如果一個數(shù)的平方等于a,那么這個數(shù)就叫做a的平方根(二次方根)。
用數(shù)學(xué)語言表達即為:若x2=a,則x叫做a的平方根。
由練習(xí)知:±3是9的平方根;
±0.5是0.25的平方根;
0的平方根是0;
±0.09是0.0081的平方根。
由此我們看到+3與—3均為9的平方根,0的平方根是0,下面看這樣一道題,填空:
( )2=-4
學(xué)生思考后,得到結(jié)論此題無答案。反問學(xué)生為什么?因為正數(shù)、0、負數(shù)的平方為非負數(shù)。由此我們可以得到結(jié)論,負數(shù)是沒有平方根的。下面總結(jié)一下平方根的性質(zhì)(可由學(xué)生總結(jié),教師整理)。
。ㄈ┢椒礁再|(zhì)
1.一個正數(shù)有兩個平方根,它們互為相反數(shù)。
2.0有一個平方根,它是0本身。
3.負數(shù)沒有平方根。
。ㄋ模╅_平方
求一個數(shù)a的平方根的運算,叫做開平方的運算。
由練習(xí)我們看到+3與—3的平方是9,9的平方根是+3和—3,可見平方運算與開平方運算互為逆運算。根據(jù)這種關(guān)系,我們可以通過平方運算來求一個數(shù)的平方根。與其他運算法則不同之處在于只能對非負數(shù)進行運算,而且正數(shù)的運算結(jié)果是兩個。
。ㄎ澹┢椒礁谋硎痉椒
一個正數(shù)a的正的平方根,用符號“ ”表示,a叫做被開方數(shù),2叫做根指數(shù),正數(shù)a的負的平方根用符號“— ”表示,a的平方根合起來記作 ,其中 讀作“二次根號”, 讀作“二次根號下a”。根指數(shù)為2時,通常將這個2省略不寫,所以正數(shù)a的平方根也可記作“ ”讀作“正、負根號a”。
練習(xí):
1.用正確的符號表示下列各數(shù)的平方根:
、26 ②247 ③0.2 ④3 ⑤
解:①26 的平方根是
、247的平方根是
③0.2的平方根是
、3的平方根是
、 的平方根是
由學(xué)生說出上式的讀法。
六、總結(jié)
本節(jié)課主要學(xué)習(xí)了平方根的概念、性質(zhì),以及表示方法,回去后要仔細閱讀教科書,鞏固所學(xué)知識。
七、作業(yè)
教材P127練習(xí)1、2、3、4。
【平方根教案】相關(guān)文章:
《平方根》教案03-09
《平方根》教案范文03-08
平方根教案范文05-18
平方根教案參考06-02
平方根教案設(shè)計05-14
《平方根》教案(通用7篇)10-21
平方根說課稿03-04
平方根教學(xué)反思07-05
平方根教學(xué)反思02-28
平方根的教學(xué)反思06-25